miércoles, 8 de diciembre de 2010

Energia potencial y trabajo electrico

Trabajo eléctrico y energía potencial eléctrica
Considérese una carga puntual q en presencia de un campo eléctrico. La carga experimentará una fuerza eléctrica. Se define como el trabajo "W"
\vec F=q \vec E \,\!
 
Ahora bien, si se pretende mantener la partícula en equilibrio, o desplazarla a velocidad constante, se requiere de una fuerza que contrarreste el efecto de la generada por el campo eléctrico. Esta fuerza deberá tener la misma magnitud que la primera, pero sentido contrario, es decir:
{\vec F}_a=-q \vec E \,\!(1)
 
Trabajo3.PNG
Partiendo de la definición clásica de trabajo, en este caso se realizará un trabajo para trasladar la carga de un punto a otro.De tal forma que al producirse un pequeño desplazamiento dl se generará un trabajo dW. Es importante resaltar que el trabajo será positivo o negativo dependiendo de cómo se realice el desplazamiento en relación con la fuerza {\vec F}_a \,\!. El trabajo queda, entonces, expresado como:

dW={\vec F}_a \cdot d \vec{l}= F_a \, dl\cos (\theta) \,\!
 
Nótese que en el caso de que la fuerza no esté en la dirección del desplazamiento, sólo se debe multiplicar su componente en la dirección del movimiento.
Será considerado trabajo positivo el realizado por un agente externo al sistema carga-campo que ocasione un cambio de posición y negativo aquél que realice el campo.
Teniendo en cuenta la expresión (1):

dW=\vec F_a \cdot d \vec l = q \vec E \cdot d \vec {l} \,\!
Por lo tanto, el trabajo total será:

W=\int_{A}^{B} q\vec E \cdot d \vec l \,\!
Si el trabajo que se realiza en cualquiera trayectoria cerrada es igual a cero, entonces se dice que estamos en presencia de un campo eléctrico conservativo.
Expresándolo matemáticamente:
 
W=\int_{A}^{A} q\vec E \cdot d \vec l=0 \,\!
Ahora bien, sea una carga q que recorre una determinada trayectoria en las inmediaciones de una carga Q tal como muestra la figura.

Trabajoelectrico.PNG
El trabajo infinitesimal es el producto escalar del vector fuerza F por el vector desplazamiento dl, tangente a la trayectoria, o sea:

\vec F \cdot d \vec l=F \, dl \cos(\theta)=F \, dr \,\!
 
donde dr es el desplazamiento infinitesimal de la carga q en la dirección radial.
Para calcular el trabajo total, se integra entre la posición inicial A, distante r_A \,\! del centro de fuerzas y la posición final B, distante r_B \,\! del centro fijo de fuerzas:

W=\int_{A}^{B} \frac {1}{4\pi{\epsilon}_0}\frac{Qq}{r^2} \, dr=\frac {1}{4\pi{\epsilon}_0}\frac{Qq}{r_A}-\frac {1}{4\pi{\epsilon}_0}\frac{Qq}{r_B} \,\!
 
De lo anterior se concluye que el trabajo W no depende del camino seguido por la partícula para ir desde la posición A a la posición B. lo cual implica que la fuerza de atracción F, que ejerce la carga Q sobre la carga q es conservativa. La fórmula de la energía potencial es:

E_p=\frac {1}{4\pi{\epsilon}_0}\frac{Qq}{r} \,\!
 
Por definición, el nivel cero de energía potencial se ha establecido en el infinito, o sea, si y sólo si  r=\infty, \quad E_p=0 \,\!.

Energía  Potencial

En un sistema físico, la energía potencial es energía que mide la capacidad que tiene dicho sistema para realizar un trabajo en función exclusivamente de su posición o configuración. Puede pensarse como la energía almacenada en el sistema, o como una medida del trabajo que un sistema puede entregar. Suele abreviarse con la letra \scriptstyle U o \scriptstyle E_p.

La energía potencial puede presentarse como energía potencial gravitatoria, energía potencial electrostática, y energía potencial elástica.

Más rigurosamente, la energía potencial es una magnitud escalar asociada a un campo de fuerzas (o como en elasticidad un campo tensorial de tensiones). Cuando la energía potencial está asociada a un campo de fuerzas, la diferencia entre los valores del campo en dos puntos A y B es igual al trabajo realizado por la fuerza para cualquier recorrido entre B y A.

La energía potencial puede definirse solamente cuando la fuerza es conservativa. Si las fuerzas que actúan sobre un cuerpo son no conservativas, entonces no se puede definir la energía potencial, como se verá a continuación. Una fuerza es conservativa cuando se cumple alguna de las siguientes propiedades:
  • El trabajo realizado por la fuerza entre dos puntos es independiente del camino recorrido.
  • El trabajo realizado por la fuerza para cualquier camino cerrado es nulo.
  • Cuando el rotor de la fuerza es cero.
Se puede demostrar que todas las propiedades son equivalentes (es decir, que cualquiera de ellas implica la otra). En estas condiciones, la energía potencial se define como:
U_B - U_A = -\int_A^B \mathbf{F} \cdot d\mathbf{r} .
Si las fuerzas no son conservativas no existirá en general una manera unívoca de definir la anterior integral. De la propiedad anterior se sigue que si la energía potencial es conocida, se puede obtener la fuerza a partir del gradiente de U:
 \mathbf{F} = - \nabla U .
También puede recorrerse el camino inverso: suponer la existencia una función energía potencial y definir la fuerza correspondiente mediante la fórmula anterior. Se puede demostrar que toda fuerza así definida es conservativa.
La forma funcional de la energía potencial depende de la fuerza de que se trate; así, para el campo gravitatorio (o eléctrico), el resultado del producto de las masas (o cargas) por una constante dividido por la distancia entre las masas (cargas), por lo que va disminuyendo a medida que se incrementa dicha distancia.

No hay comentarios:

Publicar un comentario